On Improving the Performance of an
Iterative Linear Solver

Allison Baker

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Joint work with E.R. Jessup, J.M. Dennis
Department of Computer Science
University of Colorado

Portions of this work were performed under the auspices of the U.S. Department of
Energy by University of California Lawrence Livermore National Laboratory under
contract No. W-7405-Eng-48.

Can we solve large, sparse systems of linear
equations more efficiently?

e linear system: Ax=Db

(A is large, sparse, and nonsymmetric)

e costs: (1) floating-point operations (FLOPSs)

(2) movement of data through memory

e iterative linear solver: GMRES(m)

(restarted Generalized Minimum Residual method)

Motivation

e linear systems are often time-consuming to solve

e GMRES(m) convergence can be slow

e Moving data is expensive

— iterative linear solvers:

access A once per iteration loop for A xx

Memory costs impact performance

memory hierarchy component || typical CPU latency value
L1 cache 1 - 3 cycles
L2 cache 6 - 20 cycles
main memory 60 - 140 cycles
disk 10,000 cycles!!!
e getting worse: improvement in

microprocessor performance vs. memory performance:
~ 60% per year < 10% per year

e memory costs >> FLOP costs for large problems

Approach for improving GMRES (m)

(1): FLOPs

e improve convergence behavior = reduce the number of
iterations

(2): data movement

e reformulate algorithm to reduce data movement

RN ROk

e ‘'smart’ implementation

B

Accelerating convergence

e augmented methods
(Morgan '95, '00, Chapman and Saad '97)

— add additional vectors to Krylov subspace

e nested Krylov (truncated)
(Van der Vorst and Vuik '94, de Sturler '96 and '99)

— approximately solve residual equation (Ae = r;)

o LGMRES
(Baker, Jessup, Manteuffel)

— combination of the approaches above

What should we choose for B for GMRES(m)?
(Ax=Db = AX =B)

e goal:
balance memory-usage and favorable numerical properties

e Observation:
restarted GMRES(m) throws away useful information
with every restart, which slows convergence

e OUr approach:
compensate for this loss — put the lost information in B!

Ax=b = AX =B

GMRES(m):

e restart cyclei: x;=x;_71+4+c¢c, cem(A ;1)

e ideally: C = Xexact — Xj—1 — Xj — Xexact

e error approximation: z; = x; — X;_1

idea:

e put the error approximation vector in B: B= b, z |

A new algorithm: B-LGMRES

B-LGMRES(m, 1):

e restart cyclei+1: Ax=b = AX =B
X =[x;, 0] (initial guess)
B=1[b, z] (right-hand side)
i.e., augment b with an error approximation

(z; = X — Xj_1)

® Xj11 €Xj+Km(A,r;) + m(A,z)

I
GMRES(m)

B-LGMRES: an efficient implementation

Matrix-multivector multiply (Kaushik '99):

multiply A*4 vectors in =~ 1.5 the time for A*1 vector

e process the vectors in groups or “multivectors”

e interleave the vector components in memory

e.g., vi(j), va(j), v3(j), v4(j) are adjacent (row-wise)

e unroll the inner matrix multiplication loop
(across multivector elements)

10

Evaluating the new method:

B-LGMRES(15, 1) vs. GMRES(30):

equal approximation space size (30)

variety of problems from several test collections

problem size: n=7,740 to 1,709,982
(nnz = 79,566 to 1,717,792)

either ILU preconditioner or no preconditioner

Argonne’s PETSc with modifications

11

Some results...

Ratio of Execution Times

(o)

2 G O ~N

W

GMRES(30) / B-LGMRES(15,1)
N

—t

o

0 2 4 6 8 10 12 14 16 18
Problem

= the new method (B-LGMRES) is generally faster

12

Problem 12: 2-D fluid flow

size: n=13,535, nnz=390,607

method execution accesses || matrix-vector
time of A multiplies

GMRES(30) 1659+ .6 s | 1960 1960

B-LGMRES(15,1) || 785+ .2 s 1004 2008

= execution time correlates to number of accesses of A
(related to memory usage, not floating-point operations)

13

Importance of an efficient implementation

B-LGMRES(15,1): Ratio of Time to Convergence

2.5F

1.5F

;
0.5F ‘
0

0

non-multivector / multivector

2 4 6 8 10 12 14 16 1

Problem

8

Conclusions

(1): FLOPs

e accelerate GMRES(m) convergence by preventing
repetitiveness

(2): data movement

e algorithmic changes: changing b to B

e implementation: basic programming tricks

= modifying a linear solver to reduce data
movement is a viable approach to gaining efficiency!

15

